SADRO TEHRANI

ENGINEERING RESUME + PORTFOLIO

Bielech

0

ARCHE BIOTECH

Learn More 🛛

What?

Developed a biomedical device to measure blood/saline flow rates and hematuria (hemoglobin) levels through a catheter.

How?

- Design & Prototyping: integrated mechanical components like torsion hinges, ٠ magnets, and a custom button mechanism into an ergonomic ABS casing.
- 3D Printing & Testing: printed multiple prototypes, tested, and refined with clients and stakeholders as needed.
- Component Integration: Included Arduino, OLED display, voltage adapters, and a stereoscopic sensor for blood hematuria measurement.

Results

Device prototype is functional and is advancing towards testing and commercial production as of 01/13/25

What?

Designed an at home physiotherapy device to help stroke survivors regain shoulder and arm motor control through **progressive assistive and resistive** exercises.

How?

- Design:
 - Modelled components in **SolidWorks**, integrating a **DC Motor** with springplungers **hard stops for** lateral ROM
 - Created single-handed setup and adjustment via a pin and friction hinge mechanism
 - Adjustability: Designed adjustable handles for a variety of physio-recommended exercises, allowing for 90% anthropomorphic compatibility.

Results

Presented the device Infront of a panel and judges, winning **1st place** in the competition.

elfow_t handles **4-STROKE** DESIGNS

hardstop

Watch Video!

DC motor

2023-2024 MCMASTER FORMULA E

Learn More 🗹

What?

Joined McMaster Formula Electric as part of the chassis sub team, contributing to the design, manufacturing, and assembly of the EV5 electric vehicle for the yearly SAE competition.

How?

- **Design:** Contributed to the main hoop and Jack bar design, using **SolidWorks** with **FEA** and **GD&T** to optimize chassis components for PO's and in house manufacturing
- Manufacturing:
 - Performed carbon fiber layups for chassis panels, ensuring proper resin infusion and curing.
 - Assisted in bending, notching, and assembling steel tubes for the main hoop to specification
- General Assembly: Helped install mechanical components, sanding, fitting, and aligning parts during the final assembly

Results

• Successfully completed EV5, meeting mechanical inspection and placing 41st in the competition

What?

 Designed and manufactured Aluminum Jack bar supports, decreasing net weight by ~64% via a combination of FEA, material selection and topology optimization as well as housing radiator.

How?

- Hand Calculations and FOS: Performed simple torque calculations to estimate bar load during vehicle jacking (1500N) and applied a 1.5 FOS.
- Material Selection:
 - The part was designed using ½ inch Aluminum 6061-T651 because of its high strength-to-weight ratio and heat treatment (T6).
 - This material choice allowed for a 64% weight reduction compared to the previous steel model, reducing the weight from 1.6 kg to 0.9 kg for two bars.
- FEA and Topology Optimization:
 - Performed FEA in SolidWorks and optimized model using topology optimization, successfully further reducing the weight by an additional 35%

ERGONOMIC JACKBAR

Final Assembly

BAJA SAE

PRINTED JIGS

Learn More 🗹

What?

Designed, 3D printed and installed Jigs for welding suspension tabs to the steel tube chassis.

Jig and Tab installation

How?

- Design & Prototyping:
 - Chassis was mounted and jigged onto +-0.001-inch accurate weld table.
 - The tab jigs were designed with this weld table as reference allowing the team to precisely place and weld tabs
- TIG Welding

•

Results

• Successfully welded rear suspension (camber link) tabs to chassis and removed jig upon completion

2022 LOCOMOTIVE ROBOT Learn More 🗹 (gears + permotion, Induino wheel (Rolled p) nuitch chassis nagnets

Watch Video!

What?

• Created a robot which could complete a T-shaped course in a speedy manner, the only catch being that the starting position could not have any active wheels.

How?

- Fold up wheels: Designed, and prototyped 3D printed "fold-up" wheels with press-fit magnetic connections, guiding spokes and low friction Chicago bolts.
- Drivetrain: Implemented a 3d printed gear train with a 1.9:1 ratio for efficient power transmission, minimizing space and cost.
- Testing and Iteration: Refined designs to optimize chassis space, enhance wheel function, and reduce weight.

How?

The robot successfully completed the course in 8.87 seconds, correctly responding to obstacles with minimal wheel slippage and effective wheel folding

wheel (starting)

chicago bolls

What?

• Developed a *conceptual* drone-based system for detecting algal blooms to manage cyanobacteria in lake basins.

Live water sampling system

How?

- **Design and Modeling**: Used Inventor for drone design, Blender for 3D modeling, and Adobe Suite for presentation.
- Energy Harvesting: Proposed piezoelectric devices on wingtips to generate electricity from wing vibrations.
- Water Sampling: Installing retractable probes for water sampling, allowing real-time water quality analysis.

Results

- Developed a conceptual, energy-efficient drone design with potential for real-time environmental monitoring.
- Presented the concept through an animated video, showcasing its innovative approach and receiving positive feedback.

▶ <u>Watch Video!</u>

AVIANAUTICS DRONE Learn More

2023

2022 DIY BAR TABLE Learn More!

Prelim Design (& measurements

What?

• Designed and built a customized Bar Table for the basement of a house

How?

- Conducted preliminary measurements of the area to ensure accurate design dimensions
- Developed a detailed model using Autodesk Inventor for precise visualization and planning
- Fabricated and assembled the frame, followed by sanding and varnishing for a polished finish.

7

pamino

Final Reputt

